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Abstract A replicated selection experiment aimed at 
increasing litter size (total number of pigs born per litter) 
in Danish Landrace pigs was conducted from 1984 to 
1991. The experiment included two selection and two 
control lines. In each generation, 30 and 14 first litters 
were produced in selection and control lines, respective- 
ly, and dams produced two litters. Each replicate, con- 
sisting of one selection and one control line, was founded 
from 60 families chosen randomly from the population 
at large. Family selection was practiced, and the cri- 
terion was the predicted breeding value for litter size 
computed using a repeatability animal model, and ta- 
king into account all available information. The data 
consisted of 947 records from 523 dams (424 dams had 
two litters) representing five cycles of selection of in- 
creased litter size. Data were analyzed from a Bayesian 
perspective, based on marginal posterior distributions 
of genetic parameters of interest. Marginalization was 
achieved using Gibbs sampling, with a single chain 
length of 1 205 000. After discarding the first 5 000 iter- 
ations, a sample was drawn every ten iterations, so 
120000 samples in total were saved. Densities were 
estimated and plotted, and summary statistics were 
computed from the estimated densities. The posterior 
means ( _+ standard error) of heritability and repeatabil- 
ity were 0.22 _+ 0.06 and 0.32 _+ 0.05, respectively. These 
point estimates of genetic parameters were within the 
range of literature values, although on the high side. The 
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posterior mean ( + standard error) of genetic response to 
selection, defined as the difference between the mean 
breeding values of the selected lines and that of the base 
population, was 1.37 _+ 0.43 pigs after five cycles of 
selection. The regression (through the origin) of breed- 
ing values in the selected lines on generation was 
0.25 + 0.08 pigs. Several informative priors constructed 
from information obtained with field data in this popu- 
lation were used to examine their influence on inferen- 
ces. The priors were influential because of the relatively 
small scale of the experiment. An analysis excluding data 
from one of the control lines gave smaller genetic vari- 
ance and heritability, and a smaller response to selec- 
tion. However, it appears that selection for litter size is 
effective, but that the true rate of response is probably 
smaller than data from this experiment suggest. 
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Introduction 

It is generally accepted that the economic efficiency of 
pig production can be enhanced by increasing reproduc- 
tive efficiency and that litter size is its most important 
component (Bichard et al. 1983; Smith et al. 1983; Tess 
et al. 1983). Haley et al. (1988), in a review, reported a 
mean heritability for number born alive slightly under 
0.09, with a mean repeatability of about 0.15. They con- 
cluded that for genetic evaluation, a repeatability model 
gives a rasonable approximation to the more compli- 
cated multiple-trait model, where litter sizes in different 
parities are viewed different traits. This is because ge- 
netic correlations between parities do not deviate much 
from unity. 

Such estimates of genetic partameters are needed to 
assess response to selection for litter size when breeding 
values are predicted using several sources of informa- 
tion. Expected response can be as large as 0.50 pigs per 
litter and generation (Avalos and Smith 1987), or about 
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5 % of the mean, which is high. With the exception of a 
selection experiment reported by Lamberson et al. (1991), 
and the hyperprolific shemes described by Legault  
(1985), Le Roy et al. (1987) and Sorensen and Vernersen 
(1991), selection experiments aimed at increasing litter 
size in pigs have not  given statistically significant 
responses. The encouraging predictions based on the 
assumptions of additive inheritance and infinite popu-  
lation size do not  seem to be born  out  in practice. 

Several reasons can be advanced to expalin the appar- 
ent disagreement between expected and observed respon- 
ses to selection for litter size in pigs, but  there is little 
doubt  that  finite popula t ion  size plays an impor tan t  
role. Firstly, because litter size is considered to be a trait 
of the dam, selection must operate  between families. 
Secondly, use of family information accelerates the build 
up of inbreeding (Robertson 1961), and will also lead to 
smaller responses to selection than those expected as- 
suming independence of predicted breeding values (Hill 
1976). Given the type of family structure in pigs and the 
low heritability of the trait, these factors can lead to a 
loss of response, relative to that expected on the basis of 
infinite population theory, of up to 30% (Toro et al. 1988). 

An addit ional  problem associated with selection 
experiments is that  of making exact inferences about  
selection response. Often, due to financial or space 
limitations, the scale of the experiment does not permit un- 
ambiguous inferences. Hence, a correct assessment of un- 
certainty about  response is important .  Classical analysis 
of selection experiments is based either on least-squares 
estimation, or on mixed linear model  methods  using 
animal models (Kennedy 1990). To implement  the latter, 
variance ratios are needed and, because these are un- 
known (otherwise, the experiment would not  be justifi- 
ed), l ikelihood-based estimates are often used in place of 
true parameter  values. In either case, it is difficult to 
derive the exact sampling variance of the predictor  of 
selection response, and one has to resort to appoxima-  
tions. These approximat ions  typically ignore that the 
data  have been generated under  selection, and that 
parameters  have been estimated from the data. Such 
approximat ions  probably  underst imate the true vari- 
ance of selection response. Further ,  it is unlikely that the 
distribution of the est imator  is normal,  in which case a 
point  estimate of varience gives an incomplete descrip- 
tion of uncertainty.  Variances of estimates of response to 
selection, approximated  and applied in a normal  theory 
framework, give the basis for deciding wheather  changes 
due to selection have, or have not, been significant. The 
amount  of information available in many selection experi- 
ments may  be smaller than is needed for these approxi- 
mations to work well. This could be crucial for litter size, 
as the number  of records is propor t iona l  to the number  
of dams rather  than to the number  of pigs raised. An 
inappropr ia te  assessment of uncertainty about  response 
to selection may  lead to false conclusions. 

An alternative way of drawing inferences from selec- 
tion experiments has been proposed  by Sorensen et al. 
(1994). It is based on a Bayesian model  where r andom 

samples from the requird poster ior  distributions are 
drawn by means of the Gibbs sampler, a numerical 
integration procedure.  This me thod  yields a full descrip- 
tion of selection response through its marginal  posterior  
distribution, where account  is taken not  only of the 
selection mechanism by which the data  are generated, 
but  also of the uncertainty about  values of fixed effects 
and variance components .  The purpose of this present 
paper  is to report  results of a Bayesian analysis of a 
five-generation selection experiment for an increased 
total  number  of pigs born  per litter in the Danish 
Landrace  breed. Where appropriate,  some results from 
a classical analysis are included for comparison.  The 
Bayesian analysis was carried out  with four different sets 
of priors for the variance components ,  to illustrate how 
external information can be used to supplement that 
arising from the experiment, and also to influence con- 
clusions, when the contr ibut ion of the experiment to 
inferences about  the parameter  is weak. 

Material and methods 

Experimental lines and data 

The selection experiment was conducted at a pig research farm 
belonging to the National Institute of Animal Science, Foulum, 
Denmark. The experiment was started in 1984 and ended in 1991. The 
experimental design (Fig. 1) included two replicates with a 6-month 
lag between replicates 1 and 2. 

The reference population was the Danish Landrace breed, with a 
histoy of selection for increased daily body weight gain, percent of 
meat and feed efficiency, but not directly for prolificacy. Each repli- 
cate consisted of approximately 60 (58 for one, 63 for the other) gilts 
which originated from a random sample taken from all certified 
breeding herds in Denmark. These foundation animals had no known 
genetic relationships. These gilts were mated to produce 60 litters. 
From these litters, 60 (44 females and 16 males) first generation 
animals (Fig. 1) were sampled randomly, one from each litter, and 
brought to the research farm. From these 60 sampled animals, 30 
females and 10 males were randomly assigned to a selection line, and 
the rest (14 females and 6 males) served as a control line. The lines 
were closed from this point. Within each replicate, selection and 
control lines were contemporaneous. 

Family selection was practiced using the criterion described 
below. Each female was allowed to have two litters. At parity one, all 
litters were standardized to two males and two females immediately 
after birth. Replacement animals were taken from first parity litters 
only. For the selection line, 30 replacement (selected) females were 
chosen from the 15 highest scoring families, two females per family, 
out of the 30, at each generation; 8 10 males were chosen from the 
8 10 highest scoring families, one male per family. These numbers 
varied somewhat between generations. An effort was made to keep 
population Size constant from generation to generation by using the 
next best animals if some of the originally selected ones were involun- 
tarily culled. Matings of half or full-sibs were not made. In the control 
line, replacement animals were chosen at random from the 14 litters in 
each generation; the line was maintained such that the mean and 
variance of the inbreeding coefficient were equal to those of the 
selected line. The experiment was run with discrete (non-overlapping) 
generations. A total of five cycles of selection were practiced in each 
replicate. As shown in Fig. 1, generation 2 animals were the progeny 
obtained after the first cycle of selection. 

The selection criterion consisted of breeding values predicted with 
BLUP, using records on the total number of pigs born per litter at the 
first and second parities. The model included parity number (1 or 2) 
and batch (generation x replicate) as fixed effects, and additive ge- 
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Fig. 1 Design of the selection experiment for one of the two repli- 
cates 

netic values and permanent environmental effects as random terms. 
In order to compute breeding values, heritability and repeatability 
were assumed to be 0.10 and 0.15, respectively. 

Within each replicate, selection and control animals were ran- 
domly allocated to pens. Sows were mated at the third post-pubertal 
estrus, at about 7 months of age, to produce first parity litters�9 
Weaning was 5 weeks after farrowing, and sows were mated to 
produce the second parity litters 5 days after weaning. 

Animals were fed a balanced diet based on barley, wheat and 
soybeans. From about  3 weeks of age and until they reached 25 kg, 
pigs were fed a starter diet with 21.7% crude protein. From 25 kg until 
slaughter, males were fed a diet with 19.5 % crude protein. Gilts were 
fed a diet consisting of 18% crude protein from the time of first 
mating. The amount  of feed per day varied according to the physio- 
logical stage of the animal�9 

The resulting data, including the two selection and the two control 
lines, consisted of 947 records fom 523 dams. Included were 424 dams 
who had two records (farrowings). The data represented seven gener- 
ations (0-6), including the foundation population and the progeny 
resulting from five cycles of selection. The mean inbreeding increase 
after generation 1 was approximately 2.1% each generation in both 
selection and control lines, and the mean inbreeding levels at gener- 
ation 6 reached 10.3% and 11.6% in control and selection lines, 
respectively. The overall mean + SD litter size was 10.26 _+ 2.67 pigs. 
Details about the data structure and summary statistics by gener- 
ation and line are given in Tables A1 and A2 in Appendix 1. 

Statistical methods 

Data of the four lines were analyzed jointly using the mixed linear 
model: 

y = Xfi + Z l u  + 7 , 2 e  + e (1) 

where y is an n x 1 vector of observations on the total number  of pigs 
born per litter; X, Z 1 and 7, 2 are known incidence matrices related 
location parameters fl, u and c, respectively, to y; B is a vector of fixed 
effects, including a batch (generation x replicate x parity) factor with 
24 levels, and two contrasts (line mean difference) between selection 
and control lines, one for each of two replicates; u is a random vector 
of additive genetic effects; e is a random vector of permanent environ- 
mental effects, and e is a random vector of residuals. The distribu- 
tional assumptions were: 

2 2 2 u ~ N (0, Aau), e ~ N(0, I~@ ) and e ~ N  (0, I J e ) ,  (2) 

respectively, where a~, a 2 and ~ are variance components (scalars) 
and A is the numerator  of Wright's relationship matrix; vectors u, e 
and e were assumed to be pairwise independent. The rank of X was 
p = 26, the order of u was q, = 838 (number of animals in the 
pedigree), and the order ofe was q~ = 523. The rank of the coefficient 
matrix of the mixed model equations was: N = p + q, + qc = 1387. 

Data  were analyzed from a Bayesian perspective using Gibbs 
sampling, and a standard analysis was carried out for comparison. 
The focus of the analysis was response to selection using differences in 
mean additive genetic value between generations, and the regression 
of additive genetic values on generation as end points. Posterior 
distributions for variance components and functions thereof were 
constructed as well. 

Standard analysis 

The analysis was carried out in three stages. First, REML (Patterson 
and Thomson 1971; Meyer 1988) estimates of the variance compo- 
nents were obtained. The estimated variance components were then 
used in Henderson's mixed model equations, to obtain "BLUE" and 
"BLUP" of all location parameters, including breeding values. Final- 
ly, response to selection was estimated by constructing appropriate 
functions of the predicted breeding values. 

Bayesian analysis via Gibbs sampling 

The model. Methods for making inferences in a Gaussian mixed linear 
model using the Gibbs sampler, with applications to animal breed- 
ing, are found in Wang et al. (1993, 1994). Sorensen et al. (1994) gave 
an extension to inferences about genetic response to selection. In all 
cases, inferences about an unknown parameter of interest are based 
on its marginal posterior distribution, and the marginalization of the 
joint posterior distribution is achived by means of the Gibbs sampler. 

Below, we summarize pertinent results. Briefly, aside from the 
distributional assumption described above, a Bayesian analysis needs 

�9 , 2 2 2 �9 �9 to assign priors to % a c and % and to ft. A flat prior was assigned to 
the latter, i.e., 

p(fi) oc constant, (3) 

and for the variance components, independent scaled inverted chi- 
square distributions were used: 

2 2 2 vi/2 - 1 1 2 2 p((x i ]vi, sl)oc(ai) exp(--gvisi/ai), i=u, cande (4) 

where, vg is a "degree of belief" parameter and s~ can be interpreted as 
a prior value for the appropriate variance. 

The joint  posterior density of all unknowns (0, v and a~) was then: 

p(O,v, a2ly, s,v) oc 

2 , _ ( n + v e + 2 ) / 2  ~ 1 
ae) exp {. -- ~ [(y -- Xfi - Z ,u  - Z2e)' 

'(y - Xfl - Z ,u  -- Zzc) + yes2]} 

f 1 1 2 ) • (0-2) - {q~ + ~ + 2)/2 exp 4 -- 7~-I-II'A U + V u S u ] ~  

t 2a. 3 

x (a2)-{q~ + ~+ 2)/2 exp ~ - - ~  [e'e +vcs:] t (5) 
( zac 3 



223 

where O' =(fl, u',c') the collection of all location parameters, 
, 2 2 r ' 2 2 2 l v = (0-~, 0-c), and s = (s,, s~, Se) and v = (v,, v~, v~), are the collections of 

all prior variances and prior degrees of belief parameters, respectively. 
Inference about u is based on its marginal posterior distribution 

with density p(uly), which is obtained by integrating successively all 
parameters other than u out of the joint posterior density (5). Re- 
sponse to selection was defined as a linear function of u: 

r = K u  (6 )  

where K is an appropriately defined matrix and r can be a vector (or 
scalar) whose elements would be genetic means for each generation, 
or contrasts between these genetic means or, aiternatively, regression 
coefficients representing linear and quadratic changes of genetic 
means with respect to time or some measure of selection pressure. 
Inference about r is based on its marginal posterior distribution with 
density p(rly); this can be obtained from p(uly) by the theory of 
transformation of random variables. 

Table 1 Specification of priors for the variance components (s~, 
prior varience; v~, prior degree of belief) 

Variance 0 -2 0-} 0-~ 

Prior" s~ v,, s~ vc s~ v~ 

I (1%) 0�9 5 0.531 4 6.129 10 
II (10%) 0.810 58 0.531 47 6�9 105 
III 0�9 124 0�9 74 6�9 18 867 
IV (flat) 0 - 2 0 - 2 0 - 2 

Degree of belief for Prior I (1%) and II (10%) are specified such 
that prior degrees of belief are 1% (10%) relative to total degrees of 
belief (prior plus data). For 2 ,  for example, the total number 
of observations was 947, yielding 10 as the prior degree of belief for 
Prior I10/(10+947)= 1%]. See Appendix 2 for specification of 
Prior III 

The Gibbs  sampler�9 Let 0_ ~ be 0 without its i-th component, and v_ ~ be 
v without its i-th component. The full conditional posterior distribu- 
tions for the location parameters are normal (Wang et al. 1994): 

OilY, O_i,V, 0-2e,S,V ~ N(01, ~i), i = 1,2 . . . . .  g (7) 
--  N W ~ 2 . where 0 i = (b i - ~ j  = i . j r  Off)/ ii and v i = ae/Wii. Further, wlj(bl) is 

the i j - th  (i-th) element oI  the coefficient matrix (right-hand 
side) of Henderson's mixed model equations�9 

The conditional distribution of 0-~ is in the scaled inverted chi- 
square form, so: 

0-e2 ] y ,  O, V, S ,  V ~ V j e 2 Z ;  2 ( 8 )  

with parameters ~e = n + v e, and 
~2 

__ __ Z 2 c  ) -}- V e S e ] / V  e.  s~ = [-(y X f l - Z l u - Z 2 e ) ' ( y  - X f l - Z 1  u 2 ~ 

Each full conditional density of the other two variance compo- 
nents (G/~) also is in the scaled inverted chi-square form: 

~,21y,0,v_,,o~,s,u~~,siz{ ~, i=u,~ (9t 
�9 ~ ~ 2  r - 1 2 ~ ~ 2  wtth parameters vl = q~ + vi; s~ = (u A u + v,s~)/v, and s~ = (e'c + 

2 ~ 
v~s~ )lye, respectively. 

The above full conditional posterior distributions (7)-(9) are 
called the Gibbs sampler. 

Speci f icat ion o f  prior values f o r  v i and s 2. Prior values for v i and s/2 
(i = u, c, e) need to be specified. Four sets of prior values were em- 
ployed in this study�9 The first and second sets (I and II) were specified 
such that lO0[vi/(v ~ + ni)] = 1 and 10, respectively, where n i is the 
"degree of belief" about the appropriate variance contributed by the 
data. In our case, n, = 523 (number of animals with records), n c = 424 
(number of animals with repeated records) and ne = n = 947 (the total 

2 number of records). The values used for s~ were as in set III below. The 
third set of priors was specified using a method of moments fit based 
on an independent field data set on litter size of Danish Landrace pigs 
(Estany and Sorensen, in preparation). Details about the specification 
of values for set III of priors are in Appendix 2. The fourth set (IV) was 
v~ = - 2  and s 2 --0(i = u,c,e), corresponding to flat priors for the 
three varience components, instead of the informative inverted chi- 
squares used in (4). The four sets are summarized in Table 1. Note that 
the concept of percentage of prior degree of belief relative to that of 
data used in Table 1, and throughout the paper, is for reference only 
and does not mean that a certain percentage of information is from 
prior or data. 

R u n n i n g  the Gibbs sampler.  For each of the four prior sets, the Gibbs 
sampler was run with a single chain length of 1 205 000. The first 5 000 
iterations were discarded, and samples were thereafter saved each ten 
iterations. In total, 120 000 Gibbs samples were saved. More details 
about implementation of the Gibbs sampling in Gaussian mixed 
linear models in an animal breeding context were given in Wang et al. 
(1993, 1994) and Sorensen et al. (1994). The specification used here was 
based on our experience by trial and error. For example, convergence 
checking was done under different specifications of starting values, 
chain length and the number of samples saved�9 In the final production 

run, several independent runs were made. If they produced similar 
results, convergence was assumed. 

A FORTRAN program was written to generate the samples, and 
subroutines form IMSL (IMSL Inc. 1989) were used for random 
number generation. All computations were in double precision. 

Post Gibbs analysis: density estimation and inferences 

Marginal densities of interest were estimated using two estimators: (1) 
a normal kernel density estimator using the samples of a parameter of 
interest, and (2) the average of conditional posterior densities. Sup- 
pose we want to estimate the density of x, p(x); the normal kernel 
density estimator (Silverman 1986) is: 

1 2 1 [- 1 [ x  - -  X i ~ 2 ~  

where/3(x) is the estimated density at x; x i (i = 1, 2 . . . .  , m) are the 
Gibbs-samples from p(x) and h is a fixed constant (called window 
width) given by the user. The estimator based on averaging m 
conditional densities (Gelfand and Simth 1990), assuming the condi- 
tional density, p(xly) ,  is available, is 

1 
p(x) = - -  ~ p(x ly l )  (11) 

mi=t 

where Yi, i = l, 2,.. . ,  m, are the samples from the marginal distribu- 
tion of p(y). Note that, contrary to (i0), (ll) does not require the 
samples x i. Estimation of the density of a function of the original 
variables is accomplished by applying the theory of transformation of 
random variables without having to rerun the Gibbs sampling 
scheme, provided the needed samples are saved. Again, the density of 
a transformed random variable can be estimated in the above men- 
tioned two ways. Suppose we want to make an inference about 
z = f(x ,  y), a function of x and y. Let the transformed samples be 
zi = f(xi, Yi), i = I, 2,. . . ,  m. The marginal density of z,p(z), can be 
estimated by applying (i0) using z i directly. Alternatively, the mar- 
ginal density estimate ofp(z) is computed using (i l) via either p(z I y) or 
p(zlx) ,  where p(zJy) [or p(zlx)]  is the conditional density of z trans- 
formed from p(x ly)  [-or p(ylx)~ with a transformation x -+ z [or y --+ z]. 

Inferences about variance components and functions thereof were 
as in Wang et al. (1993, 1994)�9 Sorensen et al. (1994) applied the Gibbs 
sampling in the context of making inferences about genetic response 
using simulated data�9 Some relevant results of Sorensen et al. (1994) 
are summarized and extended below. 

The conditional posterior distribution of a particular breeding 
value, from (6), is ulIREST ~ N('Oi, vi), with density: 

1 [- 1 - 2 7 
p(u~l REST) = ~ exp | -  --(u~ - 0i) | (12) 

x/2rc~i k 2vi ] 
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where REST is a short-hand for all the conditioning parameters. An 
estimator of the marginal distribution of u~ using (11) is 

1 ~ 1 m 1 F 1 - 2  7 
p(uilY) =-- L P(uilREST)=--  ~ ~ e x p / - - - ( u i -  Oij) 1(13) 

rnj= 1 mj=lx/27c~i j 1_ 2~j A 

where 0" u and gij are the values of 0i and vi, respectively, for Gibbs 
samplej. As in Sorensen et al. (1994), we define genetic response as the 
linear function 

r = Ku (14) 

where K is a known matrix. After transformation from u to r, the 
marginal density of r is estimated by 

1 ~ 
p(rly) = -  ~ p(rIREST)j. (15) 

mj=l 

When r is a scalar, the above procedure is easy to apply, as one 
transforms directly from p(uil REST) to p(rl REST). However, if r is 
not a scalar, the dimention of the conditional density used for trans- 
formation must be the same as that of r. This can cause difficulties in 
two ways: first, we may need to sample from a multivarieate distribu- 
tion so the needed samples and parameters from the appropriate 
multivariate conditional distribution must be saved; this requires a 
modification of our basic Gibbs algorithm. Secondly, the transform- 
ation from a conditional density must be one to one. This means that 
the u vector must be partitioned into two parts: a part related to the 
conditional density, and the other related to the rest. The correspond- 
ing transformation matrix K must be partitioned consistently; this is 
not easy to do in general. In this paper, we used the two density 
estimation methods, (10) and (11), when genetic response r was 
defined as a scalar function of u. The normal kernel density estimator 
(11) was used through transformed samples, when r was not a scalar. 

For convenience, the transformation matrix K can be defined in 
terms of another matrix (Q) such that: 

r = Ku = ( Q ' Q ) -  1Q'u. (16) 

If r is the mean additive genetic value of a particular generation (t), Q 
then is a vector of ls of length n, the number of animals in that 
generation, and u contains elements from that generation only. 
Applying (16) gives 

1 " 1 1 " 
~1 ~ u,. (17) t = Ku = (Q'Q)- 1Q'u = n. = Ui=nUJ+ n ~j 

i = �9 �9 

Let the transformation be uj~t;  since the conditional posterior 
distribution of uj is normal, the conditional posterior distribution of t 
is also normal: 

[ 1 ( ~  ~ 1 
t l R E S T ~ N  n Oj+ 2 ui'],Z-ivJl (18) 

i:l,i:j / n A 
where 0"j and Oj are as in (12). Averaging m conditional densities such 
as (18) yields an estimate of the marginal density of t, p(t ly). This can 
be done for each of the seven generations (i = 0, 1 .. . .  ,6), by appro- 
priately defining Q. 

Consider now making interences about total response (TR) to 
selection, defined as the difference in mean additive genetic values 
between the last generation and the foundation stock: 

r = T R  = K m  = t 6 - -  t o. (19) 

In this case, Q: = [ -  .5.5] and t' = [t o t6]. Transforming from t 6 to 
TR, the conditional posterior density of TR can be seen to be normal 
with parameters: 

TR] REST ~ N(T~R, ~TR) (20) 

where T~'R = t 6 -  to; this is so because the conditional posterior 
density of t6 is normal. The marginal density, p (TR J y), is estimated by 
averaging m normal densities as in (20). 

Another measure of response to selection is the slope 6 (scalar) of 
the regression through the origin of additive genetic values on 
generations. Here 

r = 8 = (Q'Q)- 1Q't = tjqj -k t6q 6 q (21) 
\ j = 0  / t j = o  

where now Q ' =  {@ = [0,1,. . . ,6].  Letting the transformation be 
t 6 ~ 8, the conditional posterior disttribution of 8 is, again, normal: 

8IREST ~ N(a, ~6) (22) 
~ ~ ,._6 2 

with parameters = ( Z j = 0 t j q j +  6q6)/2..j=oqj and ~52 = [q6/ 
~ =  0 q~ ] 2 vto- The marginal density of 8 ] y is estimated by averaging m 
normal densities as in (22). 

In (21), r can be expanded to include an intercept term (c~0), in 
which case the corresponding Q is 

O' = (23) 
1 2 3 4 5  

resulting in 

where 81 is now the slope of the linear regression of mean additive 
genetic values on generations. The vector r in (24) can be further 
expanded to include a quadratic term such that: 

r =  81 = ( Q ' Q ) - I Q ' t  (25) 

82 

where 82 is the appropriate regression coefficient, and 

ii Q ' =  1 2 3 4 5 (26) 
1 4 9 16 25 36 

Marginal densities of(24) and (25) [e.g., p(60 ] y ) and p(8 ~ ]y) in (24)] can 
be estimated using the normal kernel density estimator (10) from the 
transformed samples. It is seen that Q can be modified as needed for 
other measures of response to selection. It is also noted that estima- 
ting densities of (22), (24) and (25) using (11) requires the storage of all 
appropriate conditional posterior means and variances, whereas only 
Gibbs samples are needed using (10). 

Window width (h) used in (10) was the range of the effective domain 
of a parameter of interest, divided by 75. Marginal densities were 
plotted using pairs, [xi,/3(x[ y)], where x is a parameter of interest, by 
dividing the effective domain of x into 100 evenly-spaced intervals. 
Summary statistics were computed from the estimated density of x, by 
further dividing the effective domain of x into 1000 equally-spaced 
intervals, using cubic spline techniques (IMSL Inc. 1989). 

Results 

Estimated densities of variance components and 
functions thereof 

In the discussion, we emphasize the analysis under flat 
priors for the variances (such that most of the informa- 
tion was from the experiment), and then examine the 
consequences of incorporating external information 
(Priors I-III). Estimated densities of variance compo- 
nents, total variance, variance ratio including heritabil- 
ity and repeatability under flat priors for variance com- 
ponents (Prior IV) are shown in Fig. 2. All marginal 
distributions were unimodal and nearly symmetrical 
about their modes, except for p(a 2 l y) and p(a~z/a~ [ y); this 
suggests that the experiment contained relatively less 

2 than that of two other variance information about a c 
components. Estimated posterior means (standard devi- 
ations, SD) of the marginal distributions for additive 
genetic variance, heritability and repeatability were 
1.507 (0.463), 0.222 (0.062) and 0.323 (0.046), respective- 
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ly. The posterior probabilities that the true para- 
meters lie in the interval [ m e a n -  2 SD, mean + 2 SD] 
were 0.956, 0.957 and 0.953, respectively. This also 
indicated that these distributions were nearly sym- 
metric; in these cases, REML estimates were similar 
to the mean, mode and median. For parameters 
whose posterior distributions were skewed, REML was 
closer to the posterior median than to the mean or 
mode. 

It is interesting to contrast the point estimates of 
dispersion parameters given in Fig. 2 with those resulted 
from incorporating external information (Table 2). In 
particular, consider additive genetic variance and heri- a~ I 
tability. Under prior III, where the hyperparameters II 

III derived from Estany and Sorensen (in preparation) were 2 
2 II used, the posterior mean (SD) for o-, was 0.831 (0.010); ~ I 

for heritability, the corresponding estimate was 0.11 III 
(0.01). Clearly, the inferences are much sharper under ~e 2 I 
Prior III than under Prior IV; the external information II 

III 
for this population suggests that it is unlikely that G~ I 
heritability or genetic variance are as large as the limited II 

III information from the experiment would lead one to h2 I 
believe. Under Priors I and II, the information con- II 
rained in Estany and Sorensen (in preparation) is less HI 
influential than the one contained in the experimental t6-to I 
data. For example, the posterior mean (SD) ofheritabil- II 
ity was 0.201 (0.05) for Prior I (1% of weight to the III 
external datain terms of degree of belief) and 0.148 (0.02) ~0 I II 
for Prior II (10% of weight to the external data in terms III 
of degree of belief). This illustrates how the Bayesian ~, I 
analysis can be used to incorporate external evidence in II 
a real animal breeding situation. III 
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Fig. 2 Estimated marginal posterior distributions of varience com- 
ponents and functions thereof, under Prior IV (flat), along with 
estimated summary statistics. @ = a, 2 + ~rc2 + ae2 

T a b l e 2  Estimated summary statistics of marginal posterior dis- 
tributions of eight selected parameters under three informative priors 
(I, II and III), as in Table 1. Response parameters are: t 6 - t o (total 
response); 5 o and s denote intercept and slope, respectively, of the 
linear regression of mean additive genetic value on generation. 
REML and ST correspond to results from standard analyses. See text 
for other parameters 

Item Prior Mean Mode Median Variance REML(ST) 

1.341 1.256 1.318 0.151 
0.966 0.923 0.951 0.028 1.442 
0.831 0.824 0.823 0.010 
0.653 0.477 0.610 0.086 
0.584 0.546 0.571 0.015 0.654 
0.516 0.493 0.508 0.006 
4.632 4.600 4.623 0.092 
4.985 4.994 4.978 0.075 4.529 
6.087 6.086 6.086 0.004 
6.626 6.608 6.629 0.116 
6.535 6.510 6.528 0.077 6.625 
7.433 7.418 7.428 0.019 
0.201 0.200 0.200 0.003 
0.148 0.142 0.146 0.001 0.218 
0.112 0.109 0.111 0.000 
1.315 1.304 1.306 0.163 
1.155 1.144 1.150 0.111 1.381 
1.011 1.004 1.010 0.099 

--0.114 --0.107 --0.112 0.022 
-0.010 -0.098 0.010 0.016 -0.135 
-0.087 -0.085 -0.087 0.014 

0.262 0.262 0.261 0.005 
0.230 0.226 0.229 0.004 0.280 
0.201 0.201 0.201 0.003 
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Estimated marginal densities of line mean differences 

In theory, in a mixed model analysis, genetic differences 
due to selection should be picked up by the breeding 
values of animals in the appropriate lines. Hence, signifi- 
cant contrasts between selection and control lines in the 
fixed part of the model could suggest either randomi- 
zation failure, or effects due to other pertinent factors 
not included in the model. 

Posterior distributions of selection versus control 
contrasts for each of the two replicates under Prior 
IV, are plotted in Fig. 3. In one of the two replicates, 
there was some evidence of a difference in favor of the 
selection line, as the posterior mean of that contrast 
was 0.604. However, the posterior probability that the 
true difference resides in the interval: posterior 
mean _+ 2 SD ( -  0.410, 1.618) was 95.4%; this interval 
includes zero, so the hypothesis that the true difference 
is zero cannot be rejected. The posterior distribution 
of the other contrast (line 3 vs 4) was centered near 
zero. It should be noted that the classical analysis (ST) 
was in agreement with the Bayesian one, but it is imposs- 
ible to assign a measure of uncertainty to this estimate, 
because of the unknown distribution of the classical 
estimator. 

Genetic response to selection 

All estimated posterior densities of measures of response 
to selection under flat priors for variance components 
(Fig. 4) were nearly symmetric, in spite of the fact that all 
variance components were unknown. The posterior mean 
of total response (TR = t 6 - tO) was 1.367 pigs per litter. 
The estimated posterior means of the regression through 
the origin (&), and of the slope (at) of the regression of 
breeding value on generation were 0.245(6 x 0.245 = 
1.472 pigs in total) and 0.273(-0.120+ 6 x 0.273 = 
1.518 pigs in total) pigs per litter per generation, respect- 

Fig. 3 Estimated marginal posterior distributions of contrasts 
between selection and control lines under  Prior IV (flat), along with 
estimated summary statistics. Selected lines are 1 and 3, and control 
lines are 2 and 4. STs are estimates from a classical analysis 
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Fig. 4 Estimated marginal  posterior distributions of measures of 
selection response: total response (t 6 - to), linear regression through 
origin (&), and linear regression coefficients (6 o for intercept and & 1 for 
slope) of breeding value on generation under  Prior IV (flat), along 
with estimated summary statistics. STs are estimates from a classical 
analysis 

ively. These three posterior distributions indicate that 
selection was effective; intervals based on the pester\or 
mean _+ 2SD [0.516, 2.217] for TR,[0.083,0.407] for a 
and [0.118,0.428] for 61 had posterior coverage prob- 
abilities of 0.950, 0.954 and 0.954, respectively. The evi- 
dence from the experiment suggests strongly that selec- 
tion for the total number of pigs born per litter based on 
an animal model with repeated records was effective in 
the Danish Landrace population. An increase of about 
1.4 pigs per litter is about 13.6% of the mean of the base 
population (10.3 pigs); since the actual selection spanned 
a 6-year period, this implied an increase of about 2.3% 
per year. 

The estimated means of the marginal distributions 
of generation means (ti, i = 0 ,  1 . . . . .  6) under Priors 
I-IV, along with point estimates based on a classical 
analysis, are plotted in Fig. 5. The upper part of the 
graph pertains to selected lines; the bottom corres- 
ponds to control lines. The mean, mode and median 
of each of the marginal posterior distributions of 
generation means were close to each other, because 
these distributions were nearly symmetric. Also in- 
cluded in the figure are the predicted generation means 
based on: 

t i=60  +c31i= - 0.120 + 0.273 i; i =  0, 1,2,. . . ,6 (27) 
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Fig. 5 Plot  of mean  breeding values against  generation.  Each  po in t  
is an  es t imated poster ior  m e a n  of an  appropr ia te  poster ior  distr ibu- 
t ion  under  a par t icular  set of priors  of varience componen t s  (see 
Table  1 for pr ior  specifications). For  example, a t  genera t ion  2, a poin t  
(Flat) is the pos ter ior  m e a n  of the marg ina l  d is t r ibut ion  of t 2, p(t  2 [y). 
The s traight  line is based  on flat priors. ST means  are based on  a 
classical analysis 

where 3 o and &l are the estimated posterior means of the 
distributions of 5 o l Y and &l l Y, respectively, under flat 
priors. The classical point estimates (ST) of generation 
means were similar to those obtained in the Bayesian 
analysis with flat priors. When evidence from this popu- 
lation that was external to the experiment was taken 
into consideration (Priors I-III), the results indicate 
that the rate of selection response may have been lower 
than that suggested by the experimental data. This is 
because these priors gave increasing weight to the evi- 
dence from Estany and Sorensen (in preparation), which 
indicated lower genetic variance and heritability of litter 
size in the population than that suggested by the experi- 
ment. 

This point was studied further. The posterior dis- 
tributions of four selected parameters (o-2, h 2, TR and 51) 
under Priors I to IV are overlaid in Fig. 6, for compari- 
son. As the prior degree of belief parameters 
(% i = u, c, e) increased, variances of posterior distribu- 
tions became smaller. The results under Prior I were not 
very different from those under Prior IV (flat priors). 
Prior influence under Priors II and III was strong, as 
expected. As noted earlier, the posterior mean of h z 
(0.112) under Prior III was about 50% of that obtained 
under the flat prior. The estimated total response 
(TR = t 6 - to) in terms of the posterior mean _+ SD un- 
der Prior III was 1.011 __ 0.315. The slope of the linear 
regression of breeding values on generation was 
0.201 _+ 0.057. Although the hypothesis of ineffective 
selection was still rejected, the information provided by 
the external evidence indicates that the true rate of 
reponse is much lower, i.e., about 1.6% of the mean of 
the base population on an annual basis. It is to be noted 
that the posterior means of TR and &l under the flat 
priors fell in regions of relatively high density of the 
posterior distributions under Prior III. Thus, the experi- 
ment cannot be considered to be an "outlier", as is not 
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Fig. 6 Est imated marg ina l  poster ior  d is t r ibut ions  of four selected 
parameters  under  priors  I to IV: genetic var iance (a~), heri tabi l i ty (h2), 
total  response (t 6 - to), and  slope (51) of l inear regression of gener- 
a t ion m e a n  addit ive genetic value on generation.  See Table  i for pr ior  
specifications, and  Table  2 for es t imated summaries  

inconsistent with what is expected from prior informa- 
tion. In the light of all the available evidence, the rate of 
response to family selection for litter size (as practiced 
here) in Danish Landrace is expected to be around 1.6% 
per year. Equivalently, about 6 years of genetic selection 
would be needed to attain an increase in litter size of one 
pig. 

Analysis excluding control line 1, with flat priors 
for variance components 

It was observed that the behaviour of the control line 
in replicate 1 was peculiar (Appendix 1, Table A2). 
In generation one, mean litter size was 10.14, compar- 
able to the base population mean of 10.26 pigs. How- 
ever, there was a sharp drop of 1.73 pigs per litter (mean 
8.41) in generation 2 in this line, for an unknown reason, 
and mean litter size stayed around 8.0 onwards. A 
re-analysis excluding data from this control line was 
conducted using flat priors for variance components. 
The model was similar to the one applied to the whole 
data. The reduced data consisted of 805 records from 
446 dams. 

The estimated posterior means + SD of additive ge- 
netic variance (o -2) and heritability were 0.67 + 0.38 and 
0.11 _+ 0.06, respectively, while the estimated posterior 
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means +_ SD of permanent environmental variance and 
repeatability were 1.11 ___ 0.41 and 0.28 +_ 0.05. The point 
estimates of genetic parameters were closer to those 
obtained using the whole data with Prior III than with 
flat priors. Similarly, the estimated posterior mean of 
total response (TR) was 0.62 _+ 0.40, much smaller than 
the estimate of 1.37 obtained using the whole data with 
flat priors. The posterior probability that total response 
was greater than zero was 0.96, still indicating that 
selection for increased litter size in Danish Landrace 
pigs was probably effective, the posterior odds in favor 
of effective selection being 16:1. The estimated posterior 
means of the regression through the origin (c5), and of the 
slope (~1) of the regression of breeding values on gener- 
ation were 0.10 + 0.07 (6 x 0.10 = 0.60 pigs in total) and 
0.12(-0.08 + 6  x 0.12 =0.64 pigs in total) pigs per 
litter per generation, respectively. These two posterior 
distributions again indicate that selection was probably 
effective, because the posterior probabilities that 6 > 0 
and 61 > 0 were 0.95 and 0.97, respectively. 

Discussion 

We have presented a Bayesian analysis of a selection 
experiment for litter size in Danish Landrace pigs where 
BLUP of breeding value was the selection criterion. The 
analysis was based on constructing marginal posterior 
distributions of masures of genetic response, such that 
all sources of uncertainty about parameters other than 
the one of interest were taken into account. Our analysis 
is in marked contrast with a classical one, in which 
genetic response was assessed from estimated breeding 
values which, in turn, depended on the values of vari- 
ance component estimates. In the Bayesian analysis, all 
information about genetic response is contained in a 
marginal posterior distribution, so a full Bayesian infer- 
ence became possible. On the other hand, a classical 
analysis gave only a point estimate of genetic response; 
the variance of the estimate is unknown, although some 
approximations that ignore selection are available (e.g., 
Sorensen and Kennedy 1983). More generally, the samp- 
ling distribution of the classical, three-stage estimation 
procedure, is completely unknown. The Bayesian ap- 
proach took uncertainty about nuisance parameters 
and the selection process into account, and gave a 
marginal posterior distribution that was estimated by 
Monte Carlo procedures. 

The total genetic response to selection was an in- 
crease of 1.37 pigs after five cycles of selection; the linear 
regression (through the origin) of breeding values on 
generation was 0.272 (0.245) pigs per litter per gener- 
ation, the heritability and repetability estimates were 
0.22 and 0.32, respectively, under flat priors of variance 
components. All mean point estimates were different 
from 0 based on Bayesian confidence intervals, which 
had coverage probabilities of no less than 0.95. Selection 
was effective in increasing litter size of Danish Landrace 
pigs based on these results. 

The Bayesian analysis with flat priors of varience 
components excluding one of the control lines gave 
smaller total response of 0.62 pigs. The linear regression 
(through the origin) of breeding values on generation 
was 0.12 (0.10) pigs per litter per generation, and herita- 
bility and repeatability estimates were 0.11 and 0.28, 
respectively. All three measures of response to selection 
were significantly different from 0. 

The point estimates of genetic parameters for litter 
size obtained using the whole data in this study were 
within the range of literature estimates, though on the 
high side, whereas those obtained excluding records 
from one of the control lines were closer to literature 
values. Haley et al. (1988) gave an average heritability 
estimate of litter size around 0.10, based on results from 
different sources. 

The experiment was not replicated extensively, and 
the effective population size was relatively small for a 
selection experiment. It could be argued that the signifi- 
cant response observed could be due to genetic drift, 
rather than to the force of selection. However, the 
posterior distribution of measures of response to selec- 
tion takes into account both the selection process and 
drift variance; the latter is automatically adjusted for via 
the matrix of additive relationship among all animals. 

Inbreeding is known to affect litter size in pigs. How- 
ever, inbreeding effects were controlled via a planned 
mating scheme resulting in a similar increase of inbreed- 
ing in selection and control lines, each generation. A 
restriction in inbreeding level could, in the short term, 
have somewhat lowered the response to selection. 

The size of the fraternity in which a gilt is born has 
been suggested to influence the size of the litters she 
would produce subsequently (e.g., Nelson and Robinson 
1976; Rutledge 1980). This possible complication was 
removed by standardizing the first litter of a gilt into two 
males and two females after birth. 

Genes with large effects affecting litter size in this 
population are unknown. The reason for the large differ- 
ence in raw means of litter size between the selection and 
control lines in replicate 1 (Appendix I, Table A2) is 
unclear, and this may have inflated the estimates of 
response to selection. A possible explanation for a low 
mean litter size in one of the control lines could be a 
chromosomal abnormality in the population, which is 
known to lower prolificacy in pigs (Popescu 1989). In 
view of the above, the rate of genetic response to selec- 
tion for litter size assessed in the experiment from the 
whole data should be viewed with caution. 

Bayesian analysis can be regarded as a compromise 
between prior information and that contained in the 
likelihood, from data at hand. It can be thought of either 
in terms of how data modify prior information, or in 
terms of how priors influence the analysis. When data 
are strongly informative about the parameters, the like- 
lihood dominates, and vice versa. Under flat priors for 
fixed effects and variance components, the marginal 
density of a parameter is equivalent to a normalized 
marginalized likelihood. From a robust Bayesian per- 
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spective (e.g., Berger 1985), different weak and plausible 
priors  should be tried on the same data; if the con- 
clusions f rom the al ternative priors  are vastly different, 
the results of the analysis should be viewed cautiously, 
because the l ikelihood is noninformat ive ,  and can be 
influenced by  any prior.  This is a strength of Bayesian 
analysis, because it prevents  mak ing  false conclusions 
based on weak likelihoods. In this study, we used four 
pr ior  sets to analyze the data. The flat pr ior  (Prior  IV) 
represented a s i tuat ion where we had  no s t rong pr ior  
informat ion  abou t  fixed effects and variance compo-  
nents. I t  has some drawbacks ,  e.g., it is not  invar iant  
under  re-parameter iza t ion.  A mildly informat ive  pr ior  
(Prior  I) for variance componen t s  gave similar results to 
those ob ta ined  with the flat priors, indicating that  the 
l ikelihood had  some strength. This was also ascertained 
f rom the es t imated margina l  densities, m a n y  of which 
were nearly symmetrical .  Pr ior  I I I  was derived using a 
me thod  of m o m e n t s  fit f rom a published da ta  set for this 
pig popu la t ion  (Estany and Sorensen, in preparat ion).  
The  analysis with Pr ior  I I I  can be thought  of as a 
combined  analysis, via Bayes theorem,  of the published 
da ta  with that  of the selection experiment.  Beacause the 
priors  had  much  more  in format ion  abou t  pa ramete r s  
than  that  conta ined  in the experiment,  it had  a p rofound  
influence on inferences. The estimates of response to 
selection (T'-'R = 1.01 a n d  3 1  = 0.20) should be consider- 
ed more  realistic than  those derived under  flat priors. In 
any case, the Bayesian analysis provided a formal  way 
of combining  different sources of informat ion  abou t  
response to selection for litter size. 

The point  est imates f rom a three-stage classical 
analysis were comparab le  to those obta ined  with the 
Bayesian analysis under  flat priors. This was because the 
marg ina l  poster ior  distr ibution of heritabil i ty was near-  
ly normal ;  hence the pos ter ior  distr ibutions of measures  
of response to selection were also nearly normal .  In this 
situation, it is not  surprising that  the classical analysis, 
which is based on some asympto t ic  considerat ions,  
worked  well. However ,  a great  appeal  of the Bayesian 
analysis is the availabil i ty of the whole marg ina l  pos- 
terior distribution, f rom which point  est imates can be 
computed ,  exact interval  est imates can be constructed,  
and probabi l i ty  s ta tement  can be made  abou t  a pa- 
rameter  of  interest. In the classical analysis, only a point  
est imate and, at best, an app rox ima te  s tandard  error  of  
the estimate,  can be obtained.  

The Bayesian analysis via Gibbs  sampling was com- 
puta t ional ly  expensive. In each of the four analyses 
made,  the C P U  time elapsed was approx imate ly  22.3 h 
using a HP9000/828 running H P U X  8.02. The post  
Gibbs  analysis of density es t imat ion was expensive too, 
due to the large n u m b e r  of  samples  saved. However ,  this 
cost is minimal  relative to the cost of  generat ing the 
data. 

In conclusion, a Bayesian analysis of a selection 
exper iment  via Gibbs  sampl ing provided  a rich inferen- 
tial f r amework  that  can be s t rengthened by a consider- 
a t ion of relevant  external evidence. 

Appendix 1 

Characteristics of the data from the selection experiment 

Table A1 Number of records by generation and line (REP repli- 
cate, S selection, C control, First no. of first litters, Second no. of 
second litters, N first + second) 

Rep Line Records Generation Total 
1 2 3 4 5 6 

1 S First 31 32 32 32 28 28 183 
Second 27 23 24 26 23 22 145 
N 58 55 56 58 51 50 328 

C First 11 12 14 14 13 13 77 
Second tl  10 11 12 11 10 65 
N 22 22 25 26 24 23 142 

S First 28 30 27 21 27 27 160 
Second 23 21 21 21 23 23 132 
N 51 51 48 42 50 50 292 

C First 15 15 20 22 15 16 103 
Second 13 11 13 17 14 14 82 
N 28 26 33 39 29 30 185 
First 85 89 93 89 83 84 523 
Second 74 65 69 76 71 69 424 
N 159 154 162 165 154 153 947 

Total 

Appendix 2 

Specification of prior values for v i and s { (i = u, e, e) 
using a method of moments fit 

An independent field data set on litter size of Danish Landrace pigs 
consisting of 19666 records for 7 851 dams, most of them with 
multiple parties (Estany and Sorensen, in preparation), was used to 
derive the prior values. An animal model with repeated records 
similar to (1) was employed. REML estimates (Meyer 1988) of the 

. ^ 2  ^ 2  ^ 2  variance components were % = 0.810, % = 0.531, and % = 6.129. 
These REML estimates were used as hyperparameters in (8) and (9), 
i.e., s 2 = 62 (i = u, c, e). Note that in this data set: 
^2 ^2 ^2 ^2 ~/2 ^2 ^2 av = ~u + ~rc + ~r e = 7.470, = ~u/~rp = 0.108 

and 
~2 = ~2/62 = 0.071. 

The asymptotic standard errors were: SE(h 2)=0.014 and 
SE(~ a) = 0.012, so that h 2 and c 2 were well estimated. 

Assuming that each of the variance components has a scaled 
inverted chi-square distribution, the coefficient of variation (CV) can 
be shown to be: 

cv(~)  = ~ -  4) 

so the degree of belief parameter is: 

v i = 4 + 2/[CV(a2)] 2. (A1) 

Next, we estimate C V ( ~ )  from the REML estimates and their 
estimated standard errors. Recalling that CV(x)  = SE (x)/x and as- 
sunaing that ~_2 is known without error, 

= sE(%h 1/~ SE(a.) /a .  = ^2 2 ^2 

= (7.470 x 0.014)/0.810 = 0.129. 

= SE(@)/% = SE(%c )/@ 

= (7.470 x 0.012)/0.531 = 0.1688. 
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Table A2 Raw means and stan- 
dard deviations (SD) of litter size 
by generation and line 
(REP replicate, S selection, 
C control, N no. of records) 

Rep 

1 S 

2 S 

Total 

Line Statistics Generation 

1 2 3 4 5 6 

N 58 
Mean 9.97 
SD 2.57 
N 22 
Mean 10.14 
SD 2.59 
N 51 
Mean 10.61 
SD 2.37 
N 28 
Mean 10.64 
SD 2.36 
N 159 
Mean 10.31 
SD 2.47 

Total 

55 56 58 51 50 328 
10.35 10.52 10.53 10.24 10.12 10.29 
2.36 2.49 2.27 2.21 1.95 2.32 

22 25 26 24 23 142 
8.41 8.80 7.85 8.29 8.00 8.56 
2.75 3.08 3.07 2.37 3.33 2.94 

51 48 42 50 50 292 
11.59 10.58 11.52 10.98 10.82 11.01 
2.69 2.41 2.48 2.41 2.93 2.57 

26 33 39 29 30 185 
10.81 10.61 10.46 9.17 10.20 10.32 
2.58 2.61 2.40 3.12 2.54 2.62 

154 162 165 154 153 947 
10.56 10.29 10.35 9.97 10.05 10.26 

2.74 2.64 2.73 2.64 2.77 2.67 

For c% z, we used the result that if h 2 and c 2 are known, 
^ 2  ^ 2  SE(a~) = ~r~ ~ ,  where n is the total number of records in the 

data, and p is the rank of X (803 in this case). Then: 

CV(3.~ z) = SE(a2)/&~ z = (3 .2 ~ ) / 8 ~  

= ~/2/(n -- p) = x/2/(19 666 -- 803). 

Finally, using C-'V(3.~) in place of CV(a~) in (A1): 

v~ = 4 + 2/(0.129) 2 ~ 124, 

v c = 4 + 2/(0.1688) 2 ~ 74 

and 

v e = 4 + (19 666 - 803) = 18 867. 
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